Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

A copper alloy cylinder that is 1.3 feet long with a diameter of 45.27 inch is subjected to a tensile stress of 1,140 psi along its length. Assuming this applied stress is purely elastic, calculate the diameter, in inches, of the cylinder under this load. For this alloy, the elastic modulus is 904,672 psi and the Poisson's ratio is 0.33.

Sagot :

Answer:

diameter = 45.251 inches

Explanation:

initial length = 1.3

initial diameter = 45.27

tensile stress = σ = 1140

modulus E = 904672

v = 0.33

we calculate longitudinal strain = σ/E

= 1140/904672

= 0.0012601252

general relation for

v = -Ed/El

[tex]0.33=\frac{-Ed}{0.0012601252}[/tex]

we cross multiply

-Ed = 0.33 x 0.0012601252

= -0.00041584132in

[tex]\frac{df - 45.27}{45.27} =\frac{-0.00041584132}{1}[/tex]

when we cross multiply,

df - 45.27 = -0.00041584132*45.27

df - 45.27 = -0.018825136

df = -0.018825136 + 45.27

df = 45.251 inches

We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.