Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Answer:
this is correct on plato/edmentum
Step-by-step explanation:

For an equation to be viable, the result of the equation must be positive (i.e. greater than 1).
The 2 templates, the farmer created have two solutions, but only one of the solutions are viable.
For the first template, we have:
[tex]x \to[/tex] length of the shorter leg of the triangle
[tex]z \to[/tex] length of the longer leg of the triangle
From the question, we have:
[tex]z = 4 + 6x[/tex]
The area (y) of the first template is:
[tex]y = \frac{1}{2}xz[/tex] --- area of a triangle
So, we have:
[tex]y = \frac{1}{2}x(4 + 6x)[/tex]
Open bracket
[tex]y = 2x + 3x^2[/tex]
For the second template, we have:
[tex]Width = 5 + x[/tex]
[tex]Length = 3[/tex]
So, the area (y) of the second template is:
[tex]y = Length \times Width[/tex] --- area of a rectangle
This gives:
[tex]y = 3 \times (5 + x)[/tex]
[tex]y = 3(5 + x)[/tex]
[tex]y = 15 + 3x[/tex]
So, the expression for both areas are:
[tex]y = 2x + 3x^2[/tex] --- template 1
[tex]y = 15 + 3x[/tex] --- template 2
Both areas must be equal. This is represented as:
[tex]2x + 3x^2 = 15 + 3x[/tex]
Collect like terms
[tex]3x^2 +2x - 3x - 15 = 0[/tex]
[tex]3x^2 - x - 15 = 0[/tex]
Solve for x using quadratic formula, we have:
[tex]x = \frac{-b \± \sqrt{b^2 - 4ac}}{2a}[/tex]
Where:
[tex]a = 3; b =-1; c=-15[/tex]
So, we have:
[tex]x = \frac{-(-1) \± \sqrt{(-1)^2 - 4\times 3 \times -15}}{2 \times 3}[/tex]
[tex]x = \frac{1 \± \sqrt{181}}{6}[/tex]
[tex]x = \frac{1 \± 13.5}{6}[/tex]
Split
[tex]x = \frac{1 + 13.5}{6} \ or \ x = \frac{1 + 13.5}{6}[/tex]
[tex]x = \frac{-12.5}{6} \ or \ x = \frac{14.5}{6}[/tex]
[tex]x = -2.08 \ or \ x = 2.42[/tex]
We can see that x has 2 solutions, but only 1 of the solutions is viable because the other is negative.
Hence, option (a) is correct
Read more about viable and non-viable solutions at:
https://brainly.com/question/10558256
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.