Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Answer:
504 possible signals
Step-by-step explanation:
If all of the flags are distinguishable, there are 9 choices for the first position, 8 for the second, 7 for the third, and on down to one final choice for the last position. The total number of choices is ...
9·8·7·6·5·4·3·2·1 = 9! = 360,880
__
However, there are 3 white flags that are indistinguishable. Those three flags can be in any of 3·2·1 = 6 different orders, wherever they might be in the signal. Hence, we must divide the number of different signals by 6 to account for the indistinguishable white flags:
362,880/6 = 60,480
Each of these signals has 5 red flags that are indistinguishable. Those can be in any of 5! = 120 different orders, wherever they are in the signal. Hence the total number of distinguishable signals is ...
60480/120 = 504
504 different signals can be made from the 9 flags.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.