Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Answer:
Var = 6.31
Step-by-step explanation:
The Value at Risk (VAR)
[tex]P(X < x_o) = 0.01[/tex]
By using normal distribution
Mean [tex]\mu[/tex] = 10
Variance = 49
Standard deviation [tex]\sigma = \sqrt{49 } = 7[/tex]
This implies that:
[tex]P\Big ( \dfrac{X - \mu}{\sigma } < \dfrac{x_o - \mu }{\sigma}\Big) = 0.01 \\ \\ P\Big ( Z < \dfrac{x_o - \mu }{\sigma}\Big) = 0.01 \\ \\ \dfrac{x_o - \mu }{\sigma} = invNorm(0.01) \\ \\ x_o = \mu + \sigma \times invNorm (0.01)[/tex]
Using the z-table;
[tex]x_o = 10 + 7 \times (-2.33) \\ \\ x_o = -6.3100[/tex]
Hence, there exist 1% chance that X < -6.31 or the loss from investment is > 6.31
From the calculated value above;
[tex]V = \mu -\sigma \times 2.33[/tex]; Since the result is negative, then it shows that the greater the value(i.e the positive or less negative it is ) the lower is the value of VAR. Thus, the least value of VAR is accepted by the largest value of
[tex]min( \mu -\sigma \times2.33,0)[/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.