Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Answer: y=374.2 -133 x
Step-by-step explanation: I just did the khan test
Least-squares regression equation
The equation for the least-squares regression line for predicting yyy from xxx is of the form:
\hat{y}=a+bx
y
^
=a+bxy, with, hat, on top, equals, a, plus, b, x,
where aaa is the yyy-intercept and bbb is the slope.
Hint #22 / 4
Finding the slope
We can determine the slope as follows:
b=r\left(\dfrac{s_y}{s_x}\right)b=r(
s
x
s
y
)b, equals, r, left parenthesis, start fraction, s, start subscript, y, end subscript, divided by, s, start subscript, x, end subscript, end fraction, right parenthesis
In our case,
b=-0.95\left(\dfrac{42}{0.3}\right)=-133b=−0.95(
0.3
42
)=−133b, equals, minus, 0, point, 95, left parenthesis, start fraction, 42, divided by, 0, point, 3, end fraction, right parenthesis, equals, minus, 133
Hint #33 / 4
Finding the yyy-intercept
Because the regression line passes through the point (\bar x, \bar y)(
x
ˉ
,
y
ˉ
)left parenthesis, x, with, \bar, on top, comma, y, with, \bar, on top, right parenthesis, we can find the yyy-intercept as follows:
a=\bar y-b\bar xa=
y
ˉ
−b
x
ˉ
a, equals, y, with, \bar, on top, minus, b, x, with, \bar, on top
In our case,
a=41.7 +133 (2.5)=374.2a=41.7+133(2.5)=374.2
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.