Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Answer:
Step-by-step explanation:
From the given information:
Original diameter of the sample = 10 mm
Diameter increases by 0.4 mm
It means that the New diameter[tex]= 10+0.4 = 10.4 mm[/tex]
The change in diameter = new diameter - original diameter [tex]= (10.4 - 10) mm[/tex]
Transverse strain = [tex]\dfrac{change \ in \ diameter }{original \ diameter}[/tex]
= [tex]\dfrac{(10.4 - 10) }{10}[/tex]
= 0.04 mm
Original height = 3 mm
Reduction in the height = 20%
New height = [tex]3 -( 3*20) mm= 2.4 mm[/tex]
Change in height = new height - original height
[tex]= (2.4 - 3) mm[/tex]
Longitudinal strain = [tex]\dfrac{change \ in \ height }{original \ height}[/tex]
[tex]=\dfrac{(2.4 - 3)}{3}[/tex]
= - 0.2 mm
Now;
Poisson’s ratio of sample = [tex]- \dfrac{transverse \ strain }{ longitudinal \ strain}[/tex]
= [tex]\dfrac{- (0.04) }{ (-0.2)}[/tex]
= 0.2
From the given statement, Poisson’s ratio of sample is less than 0.1
However, in the estimation of our data, it is 0.2
This implies that It fails the screening test.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.