Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

We wish to estimate what percent of adult residents in a certain county are parents. Out of 100 adult residents sampled, 8 had kids. Based on this, construct a 99% confidence interval for the proportion p of adult residents who are parents in this county. Express your answer in tri-inequality form. Give your answers as decimals, to three places.

Sagot :

Answer:

0.0101 < p < 0.1499

Step-by-step explanation:

In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.

[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

In which

z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].

Out of 100 adult residents sampled, 8 had kids. Based on this, construct a 99%.

This means that [tex]n = 100, \pi = \frac{8}{100} = 0.08[/tex]

99% confidence level

So [tex]\alpha = 0.01[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.01}{2} = 0.995[/tex], so [tex]Z = 2.575[/tex].

The lower limit of this interval is:

[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.08 - 2.575\sqrt{\frac{0.08*0.92}{100}} = 0.0101[/tex]

The upper limit of this interval is:

[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.08 + 2.575\sqrt{\frac{0.08*0.92}{100}} = 0.1499[/tex]

Express your answer in tri-inequality form.

0.0101 < p < 0.1499