Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

An aquarium 4 m long, 1 m wide, and 1 m deep is full of water. Find the work needed to pump half of the water out of the aquarium. (Use 9.8 m/s2 for g and the fact that the density of water is 1000 kg/m3). Show how to approximate the required work by a Riemann sum.
Express the work as an integral.
Evaluate the integral.


Sagot :

Answer:

Workdone = 4900joules

Step-by-step explanation:

Work-done = force x distance

Force = mass x acceleration

If we suppose that the aquarium is at height 0 at the top and height 1 at the bottom (since it's 1m deep), then we need to lift the slide at height x by x metres.

Mass = Density x Volume, therefore force needed to lift the slice is given is

F = density*volume*∆x*acceleration

Since we the mass changes as we take out water then there will be a change in height, for this reason we have ∆x.

Acceleration is due to gravity, therefore g=9.8m/s²

Density = 1000kg/m³

Volume = 4*1*1 = 4m³

F = 1000*4*∆x*9.8 = 39200∆x

Since our distance from the top of the aquarium to the bottom is x metres, then

Work-done = 39200x∆x

To find the total workdone, we find the integral of 39200xdx and the limit will be from 0 to 0.5 since we are to pump halfway of the aquarium. Integrating that we have

19600*x² limit from 0 to 0.5

19600(0.5² – 0²) = 19600(0.25 – 0) = 19600(0.25) = 4900joules

We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.