Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Answer:
The 98% confidence interval estimate of the proportion of adults who use social media is (0.56, 0.6034).
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].
Of the 2809 people who responded to survey, 1634 stated that they currently use social media.
This means that [tex]n = 2809, \pi = \frac{1634}{2809} = 0.5817[/tex]
98% confidence level
So [tex]\alpha = 0.02[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.02}{2} = 0.99[/tex], so [tex]Z = 2.327[/tex].
The lower limit of this interval is:
[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.5817 - 2.327\sqrt{\frac{0.5817*4183}{2809}} = 0.56[/tex]
The upper limit of this interval is:
[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.5817 + 2.327\sqrt{\frac{0.5817*4183}{2809}} = 0.6034[/tex]
The 98% confidence interval estimate of the proportion of adults who use social media is (0.56, 0.6034).
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.