At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Answer:
a. mean = 1000
standard deviation = 4358.9
b. expected value of average damage bar Y = 1000
probability bar y exceeds 2000 = 0.011
Step-by-step explanation:
we have p1 = 95%, y1 = 0, p2 = 5%, y2 = 20000
Mean = (0.95 * 0) + (0.05 * 20000)
= 1000
var(y) = E(y²) - E(Y)²
= we solve for E(y)²
= 0²*0.95 + 20000²*0.05
= 0 + 20000000
then the variance of y = 20000000 - 1000²
=20000000-1000000
= $19000000
standard deviation is the square root of variance
= √19000000
= 4358.9
2.
a. Expected value of average is also the mean = 1000
b. we are to find probability that barY exceeds 2000
[tex]z=\frac{2000-1000}{\sqrt{19000000/100} }[/tex]
= 1000/435.889
= 2.29
1-p(z≤2.29)
= 1 - 0.989
= 0.011
so the probability that barY exceeds 2000 is 0.011
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.