Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Answer:
[tex]\therefore \quad \frac{d A}{d t}=6-\frac{2 A(t)}{300+t}[/tex]
Explanation:
[tex]\because \quad \frac{d A}{d t}=R_{i n}-R_{\text {out }}[/tex]
Thus, we find [tex]R_{i n}$ and $R_{\text {out first }}[/tex]
[tex]\because R_{i n}=( concentration of salt in inflow ) \cdot[/tex] (input rate of brine)
[tex]\therefore \quad R_{i n}=(2 \mathrm{lb} / \mathrm{gal}) \cdot(3 \mathrm{gal} / \mathrm{min})=6 \mathrm{lb} / \mathrm{min}[/tex]
Since the solution is pumped out at a slower rate, thus it is accumulating
at the rate of [tex](3-2)=1 \mathrm{gal} / \mathrm{min}[/tex]
Thus, after t minutes there will be [tex]300+t[/tex] gallons in tank
[tex]\because R_{\text {out }}=[/tex] (concentration of salt in outflow) \cdot (output rate of brine)
[tex]\therefore \quad R_{o u t}=\left(\frac{A(t)}{300+t} \mathrm{lb} / \mathrm{gal}\right) \cdot(2 \mathrm{gal} / \mathrm{min})=\frac{2 A(t)}{300+t} \mathrm{lb} / \mathrm{min}[/tex]
Now, we substitute by these results in the [tex]\mathrm{DE}[/tex] to get
[tex]\therefore \quad \frac{d A}{d t}=6-\frac{2 A(t)}{300+t}[/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.