At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Answer:
[tex]\therefore \quad \frac{d A}{d t}=6-\frac{2 A(t)}{300+t}[/tex]
Explanation:
[tex]\because \quad \frac{d A}{d t}=R_{i n}-R_{\text {out }}[/tex]
Thus, we find [tex]R_{i n}$ and $R_{\text {out first }}[/tex]
[tex]\because R_{i n}=( concentration of salt in inflow ) \cdot[/tex] (input rate of brine)
[tex]\therefore \quad R_{i n}=(2 \mathrm{lb} / \mathrm{gal}) \cdot(3 \mathrm{gal} / \mathrm{min})=6 \mathrm{lb} / \mathrm{min}[/tex]
Since the solution is pumped out at a slower rate, thus it is accumulating
at the rate of [tex](3-2)=1 \mathrm{gal} / \mathrm{min}[/tex]
Thus, after t minutes there will be [tex]300+t[/tex] gallons in tank
[tex]\because R_{\text {out }}=[/tex] (concentration of salt in outflow) \cdot (output rate of brine)
[tex]\therefore \quad R_{o u t}=\left(\frac{A(t)}{300+t} \mathrm{lb} / \mathrm{gal}\right) \cdot(2 \mathrm{gal} / \mathrm{min})=\frac{2 A(t)}{300+t} \mathrm{lb} / \mathrm{min}[/tex]
Now, we substitute by these results in the [tex]\mathrm{DE}[/tex] to get
[tex]\therefore \quad \frac{d A}{d t}=6-\frac{2 A(t)}{300+t}[/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.