Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Answer:
[tex]\therefore \quad \frac{d A}{d t}=6-\frac{2 A(t)}{300+t}[/tex]
Explanation:
[tex]\because \quad \frac{d A}{d t}=R_{i n}-R_{\text {out }}[/tex]
Thus, we find [tex]R_{i n}$ and $R_{\text {out first }}[/tex]
[tex]\because R_{i n}=( concentration of salt in inflow ) \cdot[/tex] (input rate of brine)
[tex]\therefore \quad R_{i n}=(2 \mathrm{lb} / \mathrm{gal}) \cdot(3 \mathrm{gal} / \mathrm{min})=6 \mathrm{lb} / \mathrm{min}[/tex]
Since the solution is pumped out at a slower rate, thus it is accumulating
at the rate of [tex](3-2)=1 \mathrm{gal} / \mathrm{min}[/tex]
Thus, after t minutes there will be [tex]300+t[/tex] gallons in tank
[tex]\because R_{\text {out }}=[/tex] (concentration of salt in outflow) \cdot (output rate of brine)
[tex]\therefore \quad R_{o u t}=\left(\frac{A(t)}{300+t} \mathrm{lb} / \mathrm{gal}\right) \cdot(2 \mathrm{gal} / \mathrm{min})=\frac{2 A(t)}{300+t} \mathrm{lb} / \mathrm{min}[/tex]
Now, we substitute by these results in the [tex]\mathrm{DE}[/tex] to get
[tex]\therefore \quad \frac{d A}{d t}=6-\frac{2 A(t)}{300+t}[/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.