Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Answer:
[tex]\therefore \quad \frac{d A}{d t}=6-\frac{2 A(t)}{300+t}[/tex]
Explanation:
[tex]\because \quad \frac{d A}{d t}=R_{i n}-R_{\text {out }}[/tex]
Thus, we find [tex]R_{i n}$ and $R_{\text {out first }}[/tex]
[tex]\because R_{i n}=( concentration of salt in inflow ) \cdot[/tex] (input rate of brine)
[tex]\therefore \quad R_{i n}=(2 \mathrm{lb} / \mathrm{gal}) \cdot(3 \mathrm{gal} / \mathrm{min})=6 \mathrm{lb} / \mathrm{min}[/tex]
Since the solution is pumped out at a slower rate, thus it is accumulating
at the rate of [tex](3-2)=1 \mathrm{gal} / \mathrm{min}[/tex]
Thus, after t minutes there will be [tex]300+t[/tex] gallons in tank
[tex]\because R_{\text {out }}=[/tex] (concentration of salt in outflow) \cdot (output rate of brine)
[tex]\therefore \quad R_{o u t}=\left(\frac{A(t)}{300+t} \mathrm{lb} / \mathrm{gal}\right) \cdot(2 \mathrm{gal} / \mathrm{min})=\frac{2 A(t)}{300+t} \mathrm{lb} / \mathrm{min}[/tex]
Now, we substitute by these results in the [tex]\mathrm{DE}[/tex] to get
[tex]\therefore \quad \frac{d A}{d t}=6-\frac{2 A(t)}{300+t}[/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.