Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Answer:
a. r = 8 cm
b. The volume of the cone is approximately 1,229 cm³
Step-by-step explanation:
The given parameters are;
The slant height of the cone = l cm
The base radius of the cone = r cm
The total surface area of the cone = 224·π cm
r : l = 2 : 5
Therefore, we have;
[tex]\dfrac{r}{l} = \dfrac{2}{5}[/tex]
[tex]r= \dfrac{2}{5} \times l[/tex]
The total surface area of a cone, T.S.A. = π·r·l + π·r²
The total surface area of the cone, T.S.A. cone = π × (2/5)·l² + π·((2/5)·l)²
T.S.A. cone = π × (2/5)·l² + π·((2/5)·l)² = π·((2/5)·l² + (4/25)·l²)
T.S.A. cone = π·l²·((2/5) + (4/25)) = (14/25)·π·l²
∴ T.S.A. cone = 224·π cm² = (14/25)·π·l²
l² = 224 cm² × 25/14 = 400 cm²
l = √(400 cm²) = 20 cm
[tex]r= \dfrac{2}{5} \times l = \dfrac{2}{5} \times 20 \, cm = 8 \, cm[/tex]
r = 8 cm
b. The volume of a cone, V = 1/3·π·r²·h
Where;
h = The height of the cone
By Pythagoras's theorem, h = √(l² - r²)
∴ h = √(20² - 8²) = √(336) = 4·√(21)
The height of the cone, h = 4·√(21)
The volume of the cone, V = 1/3 × (22/7) × 8² × 4·√(21) ≈ 1,229.00315781
∴ The volume of the cone, V to the nearest whole number ≈ 1,229 cm³.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.