Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Answer:
sin(2x)=cos(π2−2x)
So:
cos(π2−2x)=cos(3x)
Now we know that cos(x)=cos(±x) because cosine is an even function. So we see that
(π2−2x)=±3x
i)
π2=5x
x=π10
ii)
π2=−x
x=−π2
Similarly, sin(2x)=sin(2x−2π)=cos(π2−2x−2π)
So we see that
(π2−2x−2π)=±3x
iii)
π2−2π=5x
x=−310π
iv)
π2−2π=−x
x=2π−π2=32π
Finally, we note that the solutions must repeat every 2π because the original functions each repeat every 2π. (The sine function has period π so it has completed exactly two periods over an interval of length 2π. The cosine has period 23π so it has completed exactly three periods over an interval of length 2π. Hence, both functions repeat every 2π2π2π so every solution will repeat every 2π.)
So we get ∀n∈N
i) x=π10+2πn
ii) x=−π2+2πn
iii) x=−310π+2πn
(Note that solution (iv) is redundant since 32π+2πn=−π2+2π(n+1).)
So we conclude that there are really three solutions and then the periodic extensions of those three solutions.
5.8K views
View upvotes
5
Related Questions (More Answers Below)
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.