Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Answer:
sin(2x)=cos(π2−2x)
So:
cos(π2−2x)=cos(3x)
Now we know that cos(x)=cos(±x) because cosine is an even function. So we see that
(π2−2x)=±3x
i)
π2=5x
x=π10
ii)
π2=−x
x=−π2
Similarly, sin(2x)=sin(2x−2π)=cos(π2−2x−2π)
So we see that
(π2−2x−2π)=±3x
iii)
π2−2π=5x
x=−310π
iv)
π2−2π=−x
x=2π−π2=32π
Finally, we note that the solutions must repeat every 2π because the original functions each repeat every 2π. (The sine function has period π so it has completed exactly two periods over an interval of length 2π. The cosine has period 23π so it has completed exactly three periods over an interval of length 2π. Hence, both functions repeat every 2π2π2π so every solution will repeat every 2π.)
So we get ∀n∈N
i) x=π10+2πn
ii) x=−π2+2πn
iii) x=−310π+2πn
(Note that solution (iv) is redundant since 32π+2πn=−π2+2π(n+1).)
So we conclude that there are really three solutions and then the periodic extensions of those three solutions.
5.8K views
View upvotes
5
Related Questions (More Answers Below)
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.