Answered

At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

How do you prove that a point on a perpendicular bisector is equidistant from the endpoints of the segment it intersects?

will ACTUALLY GIVE YOU BRAINLY AND EVERYTHING​


Sagot :

Step-by-step explanation:

If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment. If CP is the perpendicular bisector of AB, then CA = CB. If a point is equidistant from the endpoints of a segment, then it is on the perpendicular bisector of the segment.

Answer:

Check the picture drawn

Consider the line segment AB,  

let M be the midpoint of AB, so AM=MA

erect the perpendicular MT to AB from point M. Pick a point P on MT and join it to the points A and B

The triangles PMA and PMB are congruent from the Side Angle Side congruence postulate:

AM=MA, PM is common and m(PMA)=m(PMB)=90°, as MT is perpendicular to AB

so PA=PB

Step-by-step explanation: