Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Solve the system of equations by the addition method.
8x+y=-2
4x-y=-14


Sagot :

corm

[tex]8x + y = -2[/tex]

[tex]4x - y = -14[/tex]

To solve this via the addition method, we just need the two equations together; that means that we will create a new equation where the terms on the left side of both equations are added together and are set equal to the sum of the terms on the right side of both equations:

[tex](8x + y) + (4x - y) = (-2) + (-14)[/tex]

[tex]8x + y + 4x - y = -2 - 14[/tex]

[tex](8x + 4x) + (y - y) = -16[/tex]

[tex]12x + 0 = -16[/tex]

[tex]x = \frac{-16}{12}[/tex]

[tex]x = \frac{-4}{3}[/tex]

Now that we have solved for one term, we can plug this value into either equation to get the value for the other:

[tex]4x - y = -14[/tex]

[tex]4(\frac{-4}{3}) - y = -14[/tex]

[tex]\frac{-16}{3} - y = -14[/tex]

[tex]\frac{-16}{3} + 14 = y[/tex]

[tex]\frac{26}{3} = y[/tex]

This means the solution to the system of equations is [tex](-\frac{4}{3}, \frac{26}{3})[/tex]

Answer:

Step-by-step explanation:

8x + y = -2

4x - y = 14

12x = 12

x = 1

8 + y = -2

y = -10

(1, -10)

Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.