Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Answer:
0.8746 = 87.46% probability of at least 6 failures in 7 trials.
Step-by-step explanation:
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
7 trials
This means that [tex]n = 7[/tex]
The probability of success in any trial is 9%?
So the probability of a failure is 100 - 9 = 91%, which means that [tex]p = 0.91[/tex]
Probability of at least 6 failures in 7 trials?
This is:
[tex]P(X \geq 6) = P(X = 6) + P(X = 7)[/tex]
In which
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 6) = C_{7,6}.(0.91)^{6}.(0.09)^{1} = 0.3578[/tex]
[tex]P(X = 7) = C_{7,7}.(0.91)^{7}.(0.09)^{0} = 0.5168[/tex]
[tex]P(X \geq 6) = P(X = 6) + P(X = 7) = 0.3578 + 0.5168 = 0.8746[/tex]
0.8746 = 87.46% probability of at least 6 failures in 7 trials.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.