Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Find the probability that a randomly selected point within the circle falls in the white area.

Find The Probability That A Randomly Selected Point Within The Circle Falls In The White Area class=

Sagot :

Answer:

36.3%

Step-by-step explanation:

To do this, we first find the area of the white part.

Area of white part = area of circle - Area of square.

Area of circle = πr²

Area of circle = π × 4² = 16π cm²

Area of square = (4√2)² = 32 cm²

Area of white portion = 16π - 32 = 18.265 cm²

probability that a randomly selected point within the circle falls in the white area = Area of white portion/area of circle

probability that a randomly selected point within the circle falls in the white area = 18.265/16π ≈ 0.3634

To the nearest tenth gives 36.3%

Answer:

Thd answer is 36.3 .

Step-by-step explanation:

0.363 --> 36.3%

Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.