At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Give the difinition, formula, and example problem of permutation, combination & probability... please asap huhu I'll mark you as the brainliest if can do this​

Sagot :

Answer:

Try search the answer at Enternet explorer

Step-by-step explanation:

Search "What is the definition, formula and example problem of permutation, combination and probability

Answer:

Permutation:

In mathematics, a permutation of a set is, loosely speaking, an arrangement of its members into a sequence or linear order, or if the set is already ordered, a rearrangement of its elements. The word "permutation" also refers to the act or process of changing the linear order of an ordered set.

Formula:

[tex]nPr=\frac{n!}{(n-r)!}[/tex]

Example:

Permutations are the different ways in which a collection of items can be arranged. For example, the different ways in which the alphabets A, B and C can be grouped, taken all at a time, are ABC, ACB, BCA, CBA, CAB, BAC. Note that ABC and CBA are not the same as the order of arrangement is different.

Combination:

In mathematics, a combination is a selection of items from a collection, such that the order of selection does not matter.

Formula:

[tex]nCr=\frac{n!}{r!(n-r)!}[/tex]

Example:

Combination: Picking a team of 3 people from a group of 10.

C(10,3) = 10!/(7! * 3!) = 10 * 9 * 8 / (3 * 2 * 1) = 120.

Probability:

Probability is the branch of mathematics concerning numerical descriptions of how likely an event is to occur, or how likely it is that a proposition is true. The probability of an event is a number between 0 and 1, where, roughly speaking, 0 indicates the impossibility of the event and 1 indicates certainty.

Formula:

Conditional Probability P(A | B) = P(A∩B) / P(B)

Bayes Formula P(A | B) = P(B | A) ⋅ P(A) / P(B)

Example:

Probability is the likelihood or chance of an event occurring. For example, the probability of flipping a coin and its being heads is ½, because there is 1 way of getting a head and the total number of possible outcomes is 2 (a head or tail). We write P(heads) = ½.

Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.