Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Answer:
Following are the responses to this question:
Explanation:
Given:
distance from nodes= 5 metres
Levels of transmission [tex]= 1 \ Mbps = 106 \ bps[/tex]
Speed of propagation = [tex]\ 2.5 \times 10^5 \ \frac{m}{s}[/tex]
In case 1:
Calculating the propagation delay:
[tex]\to Propagation \ delay = \frac{distance}{speed}[/tex]
[tex]=\frac{5}{(2.5 \times 10^5)}\\\\=\frac{50}{(25 \times 10^5)}\\\\= 2 \times 10^{-5} \ sec[/tex]
In case 2:
Calculating the delay be for a 10 Mbps shared bus?
[tex]\to 10 \ Mbps = 10 \times 10^6 \ bps =10^7 \ bps[/tex]
Propagation delay [tex]= 10^7 \times \text{(propagation delay for 1\ mbps)}[/tex]
[tex]= 10^7 \times (2 \times 10^{-5}) \\\\= 10^2 \times 2 \\\\= 200 \ bits.[/tex]
In case 3:
When the hosts feel the channel is idle in CSMA/CD, they also will transfer it. It classifying as a collision since both hosts consider the channel to be idle.
In case 4:
The time required for this is 2T. Here is T's time of Propagation. So, Calculating the transmission time:
[tex]=2\times (2\times 10^{-5})\\\\= 4\times 10^{-5}\\\\ = 0.00004 \ sec[/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.