Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Answer:
A. K = 59.5
Explanation:
Hello there!
In this case, since this reaction seems to start moving leftwards due to the fact that neither A nor Y are present at equilibrium, we should rewrite the equation:
3C (g) + D (g) <-- --> 2A (g) + Y (g)
Thus, the equilibrium expression is:
[tex]K^{left}=\frac{[A]^2[Y]}{[C]^3[D]}[/tex]
Next, according to an ICE table for this reaction, we find that:
[tex][A]=2x[/tex]
[tex][Y]=x[/tex]
[tex][C]=0.651M-3x[/tex]
[tex][D]=0.754M-x[/tex]
Whereas x is calculated by knowing that the [C] at equilibrium is 0.456M; thus:
[tex]x=\frac{0.651-0.456}{3} =0.065M[/tex]
Next, we compute the rest of the concentrations:
[tex][A]=2(0.065M)=0.13M[/tex]
[tex][Y]=0.065M[/tex]
[tex][D]=0.754M-0.065M=0.689M[/tex]
Thus, the equilibrium constant for the leftwards reaction is:
[tex]K^{left}=\frac{(0.13M)^2(0.065M)}{(0.456M)^3(0.689M)}=0.0168[/tex]
Nonetheless, we need the equilibrium reaction for the rightwards reaction; thus, we take the inverse to get:
[tex]K^{right}=\frac{1}{0.0168}=59.5[/tex]
Therefore, the answer would be A. K = 59.5.
Regards!
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.