Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

A person invested $7,400 in an account growing at a rate allowing the money to
double every 6 years. How much money would be in the account after 4 years, to the
nearest dollar?


Sagot :

Using an exponential function, it is found that $11,747 will be in the account after 4 years.

What is an exponential function?

An increasing exponential function is modeled by:

[tex]A(t) = A(0)(1 + r)^t[/tex]

In which:

  • A(0) is the initial value.
  • r is the growth rate, as a decimal.

In this problem, considering the initial investment of $7,400, and the fact that it doubles every 6 years, the equation is given by:

[tex]A(t) = 7400(2)^{\frac{t}{6}}[/tex]

Hence the amount in 4 years is given by:

[tex]A(4) = 7400(2)^{\frac{4}{6}} = 11747[/tex]

More can be learned about exponential functions at https://brainly.com/question/25537936

#SPJ1