Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Answer:
4989600 ways
Step-by-step explanation:
From the question,
The word MATHEMATICS can be arranged in n!/(r₁!r₂!r₃!)
⇒ n!/(r₁!r₂!r₃!) ways
Where n = total number of letters, r₁ = number of times M appears r₂ = number of times A appears, r₃ = number of times T appears.
Given: n = 11, r₁ = 2, r₂ = 2, r₃ = 2
Substitute these value into the expression above
11!/(2!2!2!) = (39916800/8) ways
4989600 ways
Hence the number of ways MATHEMATICS can be arranged without duplicate is 4989600 ways
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.