Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Answer:
[tex]P(x < 2.892) = 4.36\%[/tex]
Step-by-step explanation:
Given
[tex]N = 700[/tex] --- Population
[tex]\mu = 2.894[/tex] -- Mean
[tex]\sigma = 0.009[/tex] --- Standard deviation
[tex]n = 55[/tex] -- Sample
Required: [tex]P(x < 2.892)[/tex]
This question will be solved using the finite correction factor
First, calculated the z score
[tex]z = \frac{x - \mu}{\sqrt{\frac{N -n}{N -1}} * \frac{\sigma}{\sqrt n}}[/tex]
[tex]z = \frac{2.892 - 2.894}{\sqrt{\frac{700 -55}{700 -1}} * \frac{0.009}{\sqrt {55}}}[/tex]
[tex]z = \frac{-0.002}{\sqrt{\frac{645}{699}} * \frac{0.009}{7.42}}[/tex]
[tex]z = \frac{-0.002}{\sqrt{0.92} * \frac{0.009}{7.42}}[/tex]
[tex]z = \frac{-0.002}{0.95917 * 0.0012129}[/tex]
[tex]z = -1.71[/tex]
So:
[tex]P(x < 2.892) = P(z < -1.71)[/tex]
Using z table
[tex]P(x < 2.892) = 0.043633[/tex]
[tex]P(x < 2.892) = 4.36\%[/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.