Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Answer:
[tex]V_2=8L[/tex]
Explanation:
Hello there!
In this case, considering the Avogadro's gas law, which treats the volume and moles in a directly proportional way via:
[tex]\frac{V_1}{n_1}=\frac{V_2}{n_2}[/tex]
Which can be solved for the final volume, V2, as shown below:
[tex]V_2=\frac{V_1n_2}{n_1}[/tex]
Thus, by plugging in the given data, we obtain:
[tex]V_2=\frac{4L*(0.250mol+0.250mol)}{0.250mol}\\\\V_2=8L[/tex]
Regards!
The final total volume of gas is equal to 8 Liters.
Given the following data:
- Initial volume = 4 Liters.
- Initial temperature = 298 K.
- Initial pressure = 2 atm.
- Initial volume = 0.250 mol.
- Final volume = 0.250 mol.
To determine the final total volume of gas, we would apply the Avogadro's equation for an ideal gas:
How to calculate the final total volume.
At constant temperature and pressure, Avogadro's equation for an ideal gas is given by this formula:
[tex]\frac{V_1}{n_1} = \frac{V_2}{n_2}[/tex]
For the final total moles:
[tex]n_2=n_1+n_1\\\\n_2 = 0.250+0.250\\\\n_2=0.50\;mol[/tex]
Making [tex]V_2[/tex] the subject of formula, we have:
[tex]V_2 = \frac{V_1n_2}{n_1}[/tex]
Substituting the given parameters into the formula, we have;
[tex]V_2 = \frac{4 \times 0.5}{0.25}[/tex]
Final total volume = 8 Liters.
Read more on ideal gas here: brainly.com/question/3173452
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.