Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Answer:
[tex]162\sqrt{3}[/tex]
Step-by-step explanation:
The equation for finding the area of a hexagon with a side length is
[tex](s^23\sqrt{3} )/2[/tex]
insert [tex]6\sqrt{3}[/tex]
and you are left with 162\sqrt{3}
Hope that helps :)
Answer:
[tex] \displaystyle E)\: 162 \sqrt{3} [/tex]
Step-by-step explanation:
we are given a side a polygon
and said to figure out the area
recall the formula of regular polygon
[tex] \displaystyle \: \frac{ {na}^{2} }{4} \cot \left( \frac{ {180}^{ \circ} }{n} \right) [/tex]
where a represents the length of a side
and n represents the number of sides
the given shape has 6 sides
and has a length of [tex]\displaystyle 6\sqrt{3}[/tex]
so our n is 6 and a is 6√3
substitute the value of n and a:
[tex] \displaystyle \: \frac{ {6 \cdot \:( 6 \sqrt{3} })^{2} }{4} \cot \left( \frac{ {180}^{ \circ} }{6} \right) [/tex]
reduce fraction:
[tex] \displaystyle \: \frac{ {6 \cdot \:( 6 \sqrt{3} })^{2} }{4} \cot \left( \frac{ { \cancel{180}^{ \circ}} ^{ {30}^{ \circ} } }{ \cancel{6 \: } } \right) [/tex]
[tex] \displaystyle \: \frac{6 \cdot \: (6 \sqrt{ {3} } {)}^{2} }{4} \cot( {30}^{ \circ} ) [/tex]
simplify square:
[tex] \displaystyle \: \frac{6 \cdot \: 36 \cdot \: 3 }{4} \cot( {30}^{ \circ} ) [/tex]
reduce fraction:
[tex] \displaystyle \: \frac{6 \cdot \: \cancel{36} \: ^{9} \cdot \: 3 }{ \cancel{ 4 \: } } \cot( {30}^{ \circ} ) [/tex]
[tex] \displaystyle \: 6 \cdot \: 9 \cdot \: 3 \cot( {30}^{ \circ} ) [/tex]
simplify multiplication:
[tex] \displaystyle \: 162\cot( {30}^{ \circ} ) [/tex]
recall unit circle:
[tex] \displaystyle \: 162 \sqrt{3} [/tex]
hence, our answer is E
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.