Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Answer:
The 99% confidence interval for the mean consumption of meat among males over age 43 is between 2.9 pounds and 3.1 pounds.
Step-by-step explanation:
We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:
[tex]\alpha = \frac{1 - 0.99}{2} = 0.005[/tex]
Now, we have to find z in the Ztable as such z has a pvalue of [tex]1 - \alpha[/tex].
That is z with a pvalue of [tex]1 - 0.005 = 0.995[/tex], so Z = 2.575.
Now, find the margin of error M as such
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.
[tex]M = 2.575\frac{1.3}{\sqrt{1384}} = 0.1[/tex]
The lower end of the interval is the sample mean subtracted by M. So it is 3 - 0.1 = 2.9 pounds
The upper end of the interval is the sample mean added to M. So it is 3 + 0.01 = 3.1 pounds
The 99% confidence interval for the mean consumption of meat among males over age 43 is between 2.9 pounds and 3.1 pounds.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.