Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

The point with coordinates $(6,-10)$ is the midpoint of the segment with one endpoint at $(8,0)$. Find the sum of the coordinates of the other endpoint.

Sagot :

Answer:

[tex](4,-20)[/tex]

Step-by-step explanation:

Let [tex]P(x,y),\,Q(u,v)[/tex] be two points then midpoint of [tex]PQ[/tex] is given by [tex](\frac{x+u}{2},\frac{y+v}{2})[/tex]

Put midpoint as [tex](6,-10)[/tex] and [tex](u,v)=(8,0)[/tex]

Therefore,

[tex](\frac{x+u}{2},\frac{y+v}{2})=(6,-10)\\\\(\frac{x+8}{2},\frac{y+0}{2})=(6,-10)\\\\\frac{x+8}{2}=6,\,\frac{y}{2}=-10\\\\x+8=12,\,y=-20\\x=12-8,\,y=-20\\x=4,\,y=-20[/tex]

So, the other point is [tex](4,-20)[/tex]