Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Answer:
y=0.12/1(x-5)^2 -3
y=1/10(x-10)^2 -4
Step-by-step explanation:
Given the directrix and focus of the parabolas, the equation of the parabolas are [tex]y=\frac{1}{6}(x^{2} +10x - 2)[/tex] and [tex]y=\frac{1}{20}(-x^{2} +20x - 80)[/tex].
What is equation of a parabola?
Equation of a parabola is given by-
Distance of a point (x, y) on parabola from directrix = Distance of a point (x, y) on parabola from focus
focus = (-5, -3)
directrix = y = -6
[tex]\sqrt{(x+5)^{2}+(y+3)^{2} } = (y+6)\\\\ (x+5)^{2}+(y+3)^{2} = (y+6)^{2}\\\\x^{2} +25+5x = 6y+27\\\\y=\frac{1}{6}(x^{2} +10x - 2)[/tex]
focus = (10,-4)
directrix = y = 6
[tex]\sqrt{(x-10)^{2}+(y+4)^{2} } = (y-6)\\\\ (x-10)^{2}+(y+4)^{2} = (y-6)^{2}\\\\x^{2} +100-20x = -20y+20\\\\y=\frac{1}{20}(-x^{2} +20x - 80)[/tex]
Learn more about equation of parabola here
https://brainly.com/question/21685473
#SPJ2
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.