At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Answer:
[tex](a)\ g(x) = \frac{2}{3}(x+1)[/tex]
[tex](b)\ h(y) = \frac{1}{3}[1 + 4y][/tex]
[tex](c)[/tex] [tex]P(x>0.5) =\frac{5}{12}[/tex]
Step-by-step explanation:
Given
[tex]f(x,y) = \left \{ {{\frac{2}{3}(x+2y)\ \ 0\le x \le 1,\ 0\le y\le 1} \right.[/tex]
Solving (a): The marginal density of X
This is calculated as:
[tex]g(x) = \int\limits^{\infty}_{-\infty} {f(x,y)} \, dy[/tex]
[tex]g(x) = \int\limits^{1}_{0} {\frac{2}{3}(x + 2y)} \, dy[/tex]
[tex]g(x) = \frac{2}{3}\int\limits^{1}_{0} {(x + 2y)} \, dy[/tex]
Integrate
[tex]g(x) = \frac{2}{3}(xy+y^2)|\limits^{1}_{0}[/tex]
Substitute 1 and 0 for y
[tex]g(x) = \frac{2}{3}[(x*1+1^2) - (x*0 + 0^2)}[/tex]
[tex]g(x) = \frac{2}{3}[(x+1)}[/tex]
Solving (b): The marginal density of Y
This is calculated as:
[tex]h(y) = \int\limits^{\infty}_{-\infty} {f(x,y)} \, dx[/tex]
[tex]h(y) = \int\limits^{1}_{0} {\frac{2}{3}(x + 2y)} \, dx[/tex]
[tex]h(y) = \frac{2}{3}\int\limits^{1}_{0} {(x + 2y)} \, dx[/tex]
Integrate
[tex]h(y) = \frac{2}{3}(\frac{x^2}{2} + 2xy)|\limits^{1}_{0}[/tex]
Substitute 1 and 0 for x
[tex]h(y) = \frac{2}{3}[(\frac{1^2}{2} + 2y*1) - (\frac{0^2}{2} + 2y*0) ][/tex]
[tex]h(y) = \frac{2}{3}[(\frac{1}{2} + 2y)][/tex]
[tex]h(y) = \frac{1}{3}[1 + 4y][/tex]
Solving (c): The probability that the drive-through facility is busy less than one-half of the time.
This is represented as:
[tex]P(x>0.5)[/tex]
The solution is as follows:
[tex]P(x>0.5) = P(0\le x\le 0.5,0\le y\le 1)[/tex]
Represent as an integral
[tex]P(x>0.5) =\int\limits^1_0 \int\limits^{0.5}_0 {\frac{2}{3}(x + 2y)} \, dx dy[/tex]
[tex]P(x>0.5) =\frac{2}{3}\int\limits^1_0 \int\limits^{0.5}_0 {(x + 2y)} \, dx dy[/tex]
Integrate w.r.t. x
[tex]P(x>0.5) =\frac{2}{3}\int\limits^1_0 (\frac{x^2}{2} + 2xy) |^{0.5}_0\, dy[/tex]
[tex]P(x>0.5) =\frac{2}{3}\int\limits^1_0 [(\frac{0.5^2}{2} + 2*0.5y) -(\frac{0^2}{2} + 2*0y)], dy[/tex]
[tex]P(x>0.5) =\frac{2}{3}\int\limits^1_0 (0.125 + y), dy[/tex]
[tex]P(x>0.5) =\frac{2}{3}(0.125y + \frac{y^2}{2})|^{1}_{0}[/tex]
[tex]P(x>0.5) =\frac{2}{3}[(0.125*1 + \frac{1^2}{2}) - (0.125*0 + \frac{0^2}{2})][/tex]
[tex]P(x>0.5) =\frac{2}{3}[(0.125 + \frac{1}{2})][/tex]
[tex]P(x>0.5) =\frac{2}{3}[(0.125 + 0.5][/tex]
[tex]P(x>0.5) =\frac{2}{3} * 0.625[/tex]
[tex]P(x>0.5) =\frac{2 * 0.625}{3}[/tex]
[tex]P(x>0.5) =\frac{1.25}{3}[/tex]
Express as a fraction, properly
[tex]P(x>0.5) =\frac{1.25*4}{3*4}[/tex]
[tex]P(x>0.5) =\frac{5}{12}[/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.