Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Answer:
[tex](a)\ g(x) = \frac{2}{3}(x+1)[/tex]
[tex](b)\ h(y) = \frac{1}{3}[1 + 4y][/tex]
[tex](c)[/tex] [tex]P(x>0.5) =\frac{5}{12}[/tex]
Step-by-step explanation:
Given
[tex]f(x,y) = \left \{ {{\frac{2}{3}(x+2y)\ \ 0\le x \le 1,\ 0\le y\le 1} \right.[/tex]
Solving (a): The marginal density of X
This is calculated as:
[tex]g(x) = \int\limits^{\infty}_{-\infty} {f(x,y)} \, dy[/tex]
[tex]g(x) = \int\limits^{1}_{0} {\frac{2}{3}(x + 2y)} \, dy[/tex]
[tex]g(x) = \frac{2}{3}\int\limits^{1}_{0} {(x + 2y)} \, dy[/tex]
Integrate
[tex]g(x) = \frac{2}{3}(xy+y^2)|\limits^{1}_{0}[/tex]
Substitute 1 and 0 for y
[tex]g(x) = \frac{2}{3}[(x*1+1^2) - (x*0 + 0^2)}[/tex]
[tex]g(x) = \frac{2}{3}[(x+1)}[/tex]
Solving (b): The marginal density of Y
This is calculated as:
[tex]h(y) = \int\limits^{\infty}_{-\infty} {f(x,y)} \, dx[/tex]
[tex]h(y) = \int\limits^{1}_{0} {\frac{2}{3}(x + 2y)} \, dx[/tex]
[tex]h(y) = \frac{2}{3}\int\limits^{1}_{0} {(x + 2y)} \, dx[/tex]
Integrate
[tex]h(y) = \frac{2}{3}(\frac{x^2}{2} + 2xy)|\limits^{1}_{0}[/tex]
Substitute 1 and 0 for x
[tex]h(y) = \frac{2}{3}[(\frac{1^2}{2} + 2y*1) - (\frac{0^2}{2} + 2y*0) ][/tex]
[tex]h(y) = \frac{2}{3}[(\frac{1}{2} + 2y)][/tex]
[tex]h(y) = \frac{1}{3}[1 + 4y][/tex]
Solving (c): The probability that the drive-through facility is busy less than one-half of the time.
This is represented as:
[tex]P(x>0.5)[/tex]
The solution is as follows:
[tex]P(x>0.5) = P(0\le x\le 0.5,0\le y\le 1)[/tex]
Represent as an integral
[tex]P(x>0.5) =\int\limits^1_0 \int\limits^{0.5}_0 {\frac{2}{3}(x + 2y)} \, dx dy[/tex]
[tex]P(x>0.5) =\frac{2}{3}\int\limits^1_0 \int\limits^{0.5}_0 {(x + 2y)} \, dx dy[/tex]
Integrate w.r.t. x
[tex]P(x>0.5) =\frac{2}{3}\int\limits^1_0 (\frac{x^2}{2} + 2xy) |^{0.5}_0\, dy[/tex]
[tex]P(x>0.5) =\frac{2}{3}\int\limits^1_0 [(\frac{0.5^2}{2} + 2*0.5y) -(\frac{0^2}{2} + 2*0y)], dy[/tex]
[tex]P(x>0.5) =\frac{2}{3}\int\limits^1_0 (0.125 + y), dy[/tex]
[tex]P(x>0.5) =\frac{2}{3}(0.125y + \frac{y^2}{2})|^{1}_{0}[/tex]
[tex]P(x>0.5) =\frac{2}{3}[(0.125*1 + \frac{1^2}{2}) - (0.125*0 + \frac{0^2}{2})][/tex]
[tex]P(x>0.5) =\frac{2}{3}[(0.125 + \frac{1}{2})][/tex]
[tex]P(x>0.5) =\frac{2}{3}[(0.125 + 0.5][/tex]
[tex]P(x>0.5) =\frac{2}{3} * 0.625[/tex]
[tex]P(x>0.5) =\frac{2 * 0.625}{3}[/tex]
[tex]P(x>0.5) =\frac{1.25}{3}[/tex]
Express as a fraction, properly
[tex]P(x>0.5) =\frac{1.25*4}{3*4}[/tex]
[tex]P(x>0.5) =\frac{5}{12}[/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.