Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Answer:
Explanation:
The equation we use to calculate the volume needed to prepare other [tex](C_1,V_1)[/tex] the solution that has a concentration [tex]C_2[/tex] and volume [tex]V_2[/tex] is:
[tex]C_1V_1 =C_2V_2[/tex]
[tex]V_1=\dfrac{C_2V_2}{C_1}[/tex]
where;
[tex]C_1[/tex]= concentration of the first solution
[tex]V_1[/tex] = volume of the first solution
[tex]C_2[/tex] = concentration of the second solution
[tex]V_2[/tex] = volume of the second solution
2) Reduction half cell reaction for the copper (II) ion is:
[tex]Cu^{2+} + 2e^- \to Cu[/tex]
3) [tex]Cu^{+2} + 2e^- \to Cu \text{ \ \ \ E = 0.3370}[/tex]
[tex]Zn^{+2} + 2 e^- \to Zn \ \ \ \ \ \ E = -0.763[/tex]
[tex]Zn \to Zn^{+2} + 2 e^- \ \ \ \ \ \ E = +0.763[/tex]
Since the reduction potential of Cu is more; it means copper will go into reduction and zinc will undergo oxidation.
Standard Potential =[tex]E^0_{left} - E^0_{right}[/tex]
[tex]= -0.763 -0.337[/tex] ( since both are reduction potential)
[tex]\mathbf{E^0_{cell} = -1.100 volt}[/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.