Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Answer:
Explanation:
The equation we use to calculate the volume needed to prepare other [tex](C_1,V_1)[/tex] the solution that has a concentration [tex]C_2[/tex] and volume [tex]V_2[/tex] is:
[tex]C_1V_1 =C_2V_2[/tex]
[tex]V_1=\dfrac{C_2V_2}{C_1}[/tex]
where;
[tex]C_1[/tex]= concentration of the first solution
[tex]V_1[/tex] = volume of the first solution
[tex]C_2[/tex] = concentration of the second solution
[tex]V_2[/tex] = volume of the second solution
2) Reduction half cell reaction for the copper (II) ion is:
[tex]Cu^{2+} + 2e^- \to Cu[/tex]
3) [tex]Cu^{+2} + 2e^- \to Cu \text{ \ \ \ E = 0.3370}[/tex]
[tex]Zn^{+2} + 2 e^- \to Zn \ \ \ \ \ \ E = -0.763[/tex]
[tex]Zn \to Zn^{+2} + 2 e^- \ \ \ \ \ \ E = +0.763[/tex]
Since the reduction potential of Cu is more; it means copper will go into reduction and zinc will undergo oxidation.
Standard Potential =[tex]E^0_{left} - E^0_{right}[/tex]
[tex]= -0.763 -0.337[/tex] ( since both are reduction potential)
[tex]\mathbf{E^0_{cell} = -1.100 volt}[/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.