Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Answer:
The equation of motion is [tex]x(t)=-[/tex][tex]\frac{1}{3} cos4\sqrt{6t}[/tex]
Explanation:
Lets calculate
The weight attached to the spring is 24 pounds
Acceleration due to gravity is [tex]32ft/s^2[/tex]
Assume x , is spring stretched length is ,4 inches
Converting the length inches into feet [tex]x=\frac{4}{12} =\frac{1}{3}feet[/tex]
The weight (W=mg) is balanced by restoring force ks at equilibrium position
mg=kx
[tex]W=kx[/tex] ⇒ [tex]k=\frac{W}{x}[/tex]
The spring constant , [tex]k=\frac{24}{1/3}[/tex]
= 72
If the mass is displaced from its equilibrium position by an amount x, then the differential equation is
[tex]m\frac{d^2x}{dt} +kx=0[/tex]
[tex]\frac{3}{4} \frac{d^2x}{dt} +72x=0[/tex]
[tex]\frac{d^2x}{dt} +96x=0[/tex]
Auxiliary equation is, [tex]m^2+96=0[/tex]
[tex]m=\sqrt{-96}[/tex]
=[tex]\frac{+}{} i4\sqrt{6}[/tex]
Thus , the solution is [tex]x(t)=c_1cos4\sqrt{6t}+c_2sin4\sqrt{6t}[/tex]
[tex]x'(t)=-4\sqrt{6c_1} sin4\sqrt{6t}+c_2[/tex] [tex]4\sqrt{6}[/tex] [tex]cos4\sqrt{6t}[/tex]
The mass is released from the rest x'(0) = 0
[tex]=-4\sqrt{6c_1} sin4\sqrt{6(0)}+c_2[/tex] [tex]4\sqrt{6}[/tex] [tex]cos4\sqrt{6(0)}[/tex] =0
[tex]c_2[/tex] [tex]4\sqrt{6} =0[/tex]
[tex]c_2=0[/tex]
Therefore , [tex]x(t)=c_1[/tex] [tex]cos 4\sqrt{6t}[/tex]
Since , the mass is released from the rest from 4 inches
[tex]x(0)= -4[/tex] inches
[tex]c_1 cos 4\sqrt{6(0)} =-\frac{4}{12}[/tex] feet
[tex]c_1=-\frac{1}{3}[/tex] feet
Therefore , the equation of motion is [tex]-\frac{1}{3} cos4\sqrt{6t}[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.