Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Experts believe the rate of obesity (defined as having a BMI greater than 30) of adults in the United States is approximately 24.5%. A Gallup poll examined the rate of obesity in adults in the United States with a survey of 86,664 randomly sampled U.S. adults. Of the adults surveyed, 23,053 said that they were obese. The shape of the sampling distribution for the sample proportion when taking samples of size 86,664 from this population follows a ____________ distribution.

Sagot :

Answer:

Normal distribution.

Step-by-step explanation:

Central Limit Theorem

The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]

In this question:

Samples larger than 30, which means that the sampling distribution for the sample proportion follows a normal distribution.

We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.