Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Answer:
L₀ = L_f , K_f < K₀
Explanation:
For this exercise we start as the angular momentum, with the friction force they are negligible and if we define the system as formed by the disk and the clay sphere, the forces during the collision are internal and therefore the angular momentum is conserved.
This means that the angular momentum before and after the collision changes.
Initial instant. Before the crash
L₀ = I₀ w₀
Final moment. Right after the crash
L_f = (I₀ + mr²) w
we treat the clay sphere as a point particle
how the angular momentum is conserved
L₀ = L_f
I₀ w₀ = (I₀ + mr²) w
w = [tex]\frac{I_o}{I_o + m r^2}[/tex] w₀
having the angular velocities we can calculate the kinetic energy
starting point. Before the crash
K₀ = ½ I₀ w₀²
final point. After the crash
K_f = ½ (I₀ + mr²) w²
sustitute
K_f = ½ (I₀ + mr²) ( [tex]\frac{I_o}{I_o + m r^2}[/tex] w₀)²
Kf = ½ [tex]\frac{I_o^2}{ I_o + m r^2}[/tex] w₀²
we look for the relationship between the kinetic energy
[tex]\frac{K_f}{K_o}[/tex]= [tex]\frac{I_o}{I_o + m r^2}[/tex]
[tex]\frac{K_f}{K_o } < 1[/tex]
K_f < K₀
we see that the kinetic energy is not constant in the process, this implies that part of the energy is transformed into potential energy during the collision
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.