Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Answer:
Possible expressions for the radius of the can and the depth of the paint in the can are [tex]r = \sqrt{9\cdot x^{2}+24\cdot x+16}[/tex] and [tex]h = 2\cdot x[/tex], respectively.
Step-by-step explanation:
Let be the initial volumes of the initial cans represented by these expressions:
[tex]V_{1} = (8\cdot x^{3}+31\cdot x^{2}+32\cdot x)\cdot \pi[/tex] (1)
[tex]V_{2} = (10\cdot x^{3}+17\cdot x^{2})\cdot \pi[/tex] (2)
The resulting volume of the paint can is the sum of the two functions:
[tex]V_{3} = (18\cdot x^{3}+48\cdot x^{2}+32\cdot x)\cdot \pi[/tex] (3)
Then, we proceed to factor the polynomial:
[tex]V_{3} = 2\cdot (9\cdot x^{2}+24\cdot x +16)\cdot x \cdot \pi[/tex]
[tex]V_{3} = \pi\cdot (9\cdot x^{2}+24\cdot x + 16)\cdot (2\cdot x)[/tex] (3b)
By direct comparison with the volume formula for the cylinder we have the following expressions:
[tex]r^{2} = 9\cdot x^{2}+24\cdot x + 16[/tex]
[tex]r = \sqrt{9\cdot x^{2}+24\cdot x+16}[/tex]
[tex]h = 2\cdot x[/tex]
Possible expressions for the radius of the can and the depth of the paint in the can are [tex]r = \sqrt{9\cdot x^{2}+24\cdot x+16}[/tex] and [tex]h = 2\cdot x[/tex], respectively.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.