Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Use the table to determine a reasonable estimate for limStartFraction 2 x squared minus x + 15 Over x cubed minus 5 x minus 12 EndFraction as x approaches 3? One-half One-fourth 3 DNE

Sagot :

The reasonable estimate for limStartFraction 2 x squared minus x + 15 Over x cubed minus 5 x minus 12 EndFraction as x approaches 3 is [tex]\dfrac{1}{2}[/tex]

Given the limit of a function expressed as:

[tex]\lim_{x \to 3}\frac{2x^2-x+15}{x^3-5x-12}[/tex]

First, we need to substitute x = 3 into the function to have:

[tex]=\frac{2(3)^2-3+15}{3^3-5(3)-12}\\=\frac{18-3+15}{27-15-12}\\=\frac{0}{0} (indeterminate)[/tex]

Apply l'hospital rule on the function:

[tex]=\lim_{x \to 3}\frac{\frac{d}{dx} (2x^2-x+15)}{\frac{d}{dx} (x^3-5x-12)}\\=\lim_{x \to 3}\frac{4x-1}{3x^2-5}\\[/tex]

Subtitute x = 3 into the result

[tex]=\frac{4(3)-1}{3(3)^2-5}\\=\frac{12-1}{27-5}\\=\frac{11}{22}\\=\frac{1}{2}[/tex]

Hence the reasonable estimate for limStartFraction 2 x squared minus x + 15 Over x cubed minus 5 x minus 12 EndFraction as x approaches 3 is [tex]\dfrac{1}{2}[/tex]

Learn more here: https://brainly.com/question/23935467

Answer:

1/2

Step-by-step explanation:

i am in your walls

View image SmoIMagicFox