At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Answer:
Q = 114349.5 J
Explanation:
Hello there!
In this case, since this a problem in which we need to calculate the total heat of the described process, it turns out convenient to calculate it in three steps; the first one, associated to the heating of the liquid water from 40 °C to 100 °C, next the vaporization of liquid water to steam at constant 100 °C and finally the heating of steam from 100 °C to 115 °C. In such a way, we calculate each heat as shown below:
[tex]Q_1=45g*4.18\frac{J}{g\°C}*(100\°C-40\°C)=11286J\\\\Q_2=45g* 2260 \frac{J}{g} =101700J\\\\Q_3=45*2.02\frac{J}{g\°C}*(115\°C-100\°C)=1363.5J[/tex]
Thus, the total energy turns out to be:
[tex]Q_T=11286J+101700J+1363.5J\\\\Q_T=114349.5J[/tex]
Best regards!
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.