Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Answer:
The ratio of perimeter of ABCD to perimeter of WXYZ = [tex]\frac{2}{3}[/tex]
Step-by-step explanation:
First, we have to determine the multiplicative factor of the dimensions for both figures.
Considering sides AB and WX,
multiplicative factor = [tex]\frac{12}{8}[/tex]
= 1.5
So that:
XY = 6 x 1.5 = 9
YZ = 7 x 1.5 = 10.5
ZW = 7 x 1.5 = 10.5
Perimeter of ABCD = 6 + 7 + 7 + 8
= 28
Perimeter of WXYZ = 9 + 10.5 + 10.5 + 12
= 42
The ratio of the perimeters of the two quadrilaterals can be determined as;
ratio = [tex]\frac{perimeter of ABCD}{Perirmeter of WXYZ}[/tex]
= [tex]\frac{28}{42}[/tex]
= [tex]\frac{2}{3}[/tex]
The ratio of the perimeter of ABCD to perimeter of WXYZ is [tex]\frac{2}{3}[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.