Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Answer:
Line segment PM = 4.2 length
ML = 6.2
ON = 3
NK = 2
Step-by-step explanation:
Just got it on plato your welcome:)
The segments formed by each transversals and the three parallel lines are
proportional according to the three parallel lines theorem.
The observations are;
- The parallel lines divide the transversals in equal proportions, such that the ratio of the lengths of each transversal are equal.
- [tex]\displaystyle \mathrm{ Ratio \ of \ the \ segments ;\ }\frac{\overline{CB}}{\overline{AB}} = \frac{\overline{EF}}{\overline{DE}}[/tex]
Reasons:
The question is a four part question
Let the equations of the parallel lines be as follows;
Line, x; y = x
Line, y; y = x + 1
Line z; y = x + 2
The points at which transversal 1 intersect the lines x, y, and z, are;
A(0.4, 0.4), B(0.6, 1.6), and C(0.8, 2.8)
The length of segment [tex]\overline{AB}[/tex] = √((0.6 - 0.4)² + (1.6 - 0.4)²) = 0.2·√(37)
The length of segment [tex]\mathbf{\overline{CB}}[/tex] = √((0.8 - 0.6)² + (2.8 - 1.6)²) = 0.2·√(37)
The ratio of the lengths of the segment formed by transversal 1 is therefore;
[tex]\sqrt{x} \displaystyle Ratio \ of \ the \ length \ of \ the \ segments = \mathbf{\frac{\overline{CB}}{\overline{AB}}} =\frac{2 \cdot \sqrt{37} }{2 \cdot \sqrt{37} } = 1[/tex]
The points at which transversal 2 intersect the lines x, y, and z, are;
D(1.1, 3.1), E(1.3, 2.3), and F(1.5, 1.5)
The length of segment [tex]\overline{DE}[/tex] = √((1.3 - 1.1)² + (2.3 - 3.1)²) = 0.2·√(17)
The length of segment [tex]\overline{EF}[/tex] = √((1.5 - 1.3)² + (1.5 - 2.3)²) = 0.2·√(17)
[tex]\sqrt{x} \displaystyle Ratio \ of \ the \ length \ of \ the \ segments = \mathbf{\frac{\overline{EF}}{\overline{DE}}} =\frac{0.2 \cdot \sqrt{17} }{0.2 \cdot \sqrt{17} } = 1[/tex]
Therefore;
- [tex]\displaystyle \frac{\overline{CB}}{\overline{AB}} = \frac{\overline{EF}}{\overline{DE}} = 1[/tex]
Which gives;
- The proportion with which the parallel lines divide the transversals are equal.
- The ratio of the lengths for each transversal are equal.
The the comparison can also be made with the triangle proportionality theorem.
Learn more about triangle proportionality theorem here:
https://brainly.com/question/8160153
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.