Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Answer:
The wavelength of the wave is [tex]1.06\times10^6 m[/tex]
Explanation:
Lets calculate
We know an electromagnetic wave is propagating through an insulating magnetic material of dielectric constant K and relative permeability [tex]K_m[/tex] ,then the speed of the wave in this dielectric medium is [tex]\nu[/tex] is less than the speed of the light c and is given by a relation
[tex]\nu=\frac{c}{\sqrt{KK_m} }[/tex] --------- 1
In case the electromagnetic wave propagating through the insulating magnetic material , the amplitudes of electric and magnetic fields are related as -
[tex]E_m_a_x= \nu B_m_a_x[/tex]
The magnitude of the 'time averaged value' of the pointing vector is called the intensity of the wave and is given by a relation
[tex]I = S_a_v[/tex]
[tex]\frac{E_m_a_xB_m_a_x}{2K_m\mu0}[/tex]----------- 3
now , we will find the speed of the propagation of an electromagnetic wave by using equation 1
[tex]\nu=\frac{c}{\sqrt{KK_m} }[/tex]
Putting the values ,
=[tex]\nu= \frac{3.00\times10^8}{\sqrt{(3.64)(5.18)} }[/tex]
=[tex]0.6908\times10^8m/s[/tex]
= [tex]6.91\times10^7m/s[/tex]
Now , using this above solution , we will find the wavelength of the wave -
[tex]\lambda=\frac{\nu}{f}[/tex]
Putting the values from above equations -
[tex]\frac{6.91\times10^7m/s}{65.0Hz}[/tex]
[tex]\lambda= 1.06\times10^6 m[/tex]
Hence , the answer is [tex]\lambda= 1.06\times10^6 m[/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.