Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Answer:
[tex]\frac{x+20}{x+4}[/tex]
Step-by-step explanation:
Can't cancel out terms like that
need to factor out the top and bottom
[tex]\frac{x^{2} +16x-80}{x^{2} -16}[/tex] = [tex]\frac{(x+20)(x-4)}{(x-4)(x+4)}[/tex] now cancel out the (x-4) from the top and bottom
= [tex]\frac{x+20}{x+4}[/tex]
Answer & Explanation:
Error: individual terms in an equation in a fraction cannot be directly canceled out.
Correction:
the easy way (solve the quadratic equation in the numerator and complete the square in the denominator):
(x^2 + 16x - 80) / (x^2 - 16)
(x+20)(x-4) / (x+4)(x-4)
x+20 / x+4
the complicated way (manipulate the exponents and common factors):
(x^2 + 16x - 80) / (x^2 - 16)
(x^2 - 4x + 20x - 80) / x^2 - 2^4
x(x^2-1 - 2^2)+4*5(x - 2^4-2) / (x - 2^2)(x + 2^2)
x(x-4)+20(x-4) / (x-4)(x+4)
x(x-4)+(2^2 (5))(x-4) / (x-4)(x+4)
(x-4)(x + 2^2 (5)) / (x-4)(x+4)
(x-4)(x+20) / (x-4)(x+4)
x+20 / x+4
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.