At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Answer:
14
Explanation:
Step 1: Calculate the moles corresponding to 25 g of Ba(OH)₂
The molar mass of Ba(OH)₂ is 171.34 g/mol.
25 g × 1 mol/171.34 g = 0.15 mol
Step 2: Calculate the molar concentration of Ba(OH)₂
Molarity is equal to the moles of solute divided by the liters of solution.
[Ba(OH)₂] = 0.15 mol/0.250 L = 0.60 M
Step 3: Calculate the molar concentration of OH⁻
Ba(OH)₂ is a strong base according to the following equation.
Ba(OH)₂ ⇒ Ba²⁺ + 2 OH⁻
The molar ratio of Ba(OH)₂ to OH⁻ is 1:2. The molar concentration of OH⁻ is 2/1 × 0.60 M = 1.2 M.
Step 4: Calculate the concentration of H⁺
We will use the ionic product of water expression.
Kw = 1.0 × 10⁻¹⁴ = [H⁺] × [OH⁻]
[H⁺] = 1.0 × 10⁻¹⁴/[OH⁻] = 1.0 × 10⁻¹⁴/1.2 = 8.3 × 10⁻¹⁵ M
Step 5: Calculate the pH of the solution
We will use the definition of pH.
pH = -log [H⁺] = -log 8.3 × 10⁻¹⁵ = 14
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.