Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Answer:
14
Explanation:
Step 1: Calculate the moles corresponding to 25 g of Ba(OH)₂
The molar mass of Ba(OH)₂ is 171.34 g/mol.
25 g × 1 mol/171.34 g = 0.15 mol
Step 2: Calculate the molar concentration of Ba(OH)₂
Molarity is equal to the moles of solute divided by the liters of solution.
[Ba(OH)₂] = 0.15 mol/0.250 L = 0.60 M
Step 3: Calculate the molar concentration of OH⁻
Ba(OH)₂ is a strong base according to the following equation.
Ba(OH)₂ ⇒ Ba²⁺ + 2 OH⁻
The molar ratio of Ba(OH)₂ to OH⁻ is 1:2. The molar concentration of OH⁻ is 2/1 × 0.60 M = 1.2 M.
Step 4: Calculate the concentration of H⁺
We will use the ionic product of water expression.
Kw = 1.0 × 10⁻¹⁴ = [H⁺] × [OH⁻]
[H⁺] = 1.0 × 10⁻¹⁴/[OH⁻] = 1.0 × 10⁻¹⁴/1.2 = 8.3 × 10⁻¹⁵ M
Step 5: Calculate the pH of the solution
We will use the definition of pH.
pH = -log [H⁺] = -log 8.3 × 10⁻¹⁵ = 14
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.