Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Answer:
0.104 = 10.4% probability that at least 2 drive without a seatbelt.
Step-by-step explanation:
For each person, there are only two possible outcomes. Either they drive without a seatbelt, or they do not. The probability of a person driving without a seatbelt is independent of any other person. This means that we use the binomial probability distribution to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
20% of the people in Fiji drive the car without seatbelt.
This means that [tex]p = 0.2[/tex]
3 people are randomly selected
This means that [tex]n = 3[/tex]
Find the probability that at least 2 drive without a seatbelt?
This is:
[tex]P(X \geq 2) = P(X = 2) + P(X = 3)[/tex]
In which
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 2) = C_{3,2}.(0.2)^{2}.(0.8)^{1} = 0.096[/tex]
[tex]P(X = 3) = C_{3,3}.(0.2)^{3}.(0.8)^{0} = 0.008[/tex]
[tex]P(X \geq 2) = P(X = 2) + P(X = 3) = 0.096 + 0.008 = 0.104[/tex]
0.104 = 10.4% probability that at least 2 drive without a seatbelt.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.