Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
First take note of the domain of f(x) ; the square root term is defined as long as x - x ² ≥ 0, or 0 ≤ x ≤ 1.
Check the value of f(x) at these endpoints:
f (0) = 0
f (1) = 0
Take the derivative of f(x) :
[tex]f(x)=8x\sqrt{x-x^2}=8x\left(x-x^2\right)^{\frac12}[/tex]
[tex]\implies f'(x)=8\left(x-x^2\right)^{\frac12}+4x\left(x-x^2\right)^{-\frac12}(1-2x)=4\left(x-x^2\right)^{-\frac12}\left(2\left(x-x^2)\right)+x(1-2x)\right)=\dfrac{4(3x-4x^2)}{\sqrt{x-x^2}}[/tex]
For x ≠ 0, we can eliminate the √x term in the denominator:
[tex]x\neq0\implies f'(x)=\dfrac{4\sqrt x (3-4x)}{\sqrt{1-x}}[/tex]
f(x) has critical points where f '(x) is zero or undefined. We know about the undefined case, which occurs at the boundary of the domain of f(x). Check where f '(x) = 0 :
√x (3 - 4x) = 0
√x = 0 or 3 - 4x = 0
The first case gives x = 0, which we ignore. The second leaves us with x = 3/4, at which point we get a maximum of max{f(x) } = 3√3 / 2.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.