Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Answer:
Fed state - Insulin; dephosphorylation; increase; glycolysis
Fasting state - Glucagon; phosphorylation; decrease; gluconeogenesis
Explanation:
Fructose-2,6-bisphosphate is an allosteric regulator of the enzymes phosphofructokinase-1 and fructose1,6-bisphosphatase-1 which are involved in glycolysis and gluconeogenesis respectively.
After a meal the body is in a fed state, which stimulates the pancreas to secrete the hormone insulin . The plasma membrane receptor on the liver binds to this hormone and activates a signaling pathway that results in the dephosphorylation of the bifunctional enzyme, phosphofructokinase-2/fructose-2,6-bisphosphatase. This event causes a(n) increase in the concentration level of the fructose-2,6-bisphosphate (F-2,6-BP). This new concentration of F-2,6-BP activates the glycolysis pathway.
In a fasting state, the pancreas secretes the hormone glucagon . The plasma membrane receptor on the liver binds to this hormone and activates a signaling pathway that results in the phosphorylation of the bifunctional enzyme phosphofructokinase-2/fructose-2,6-bisphosphatase. This event causes a(n) decrease in the concentration level of F-2,6-BP. This new concentration level of F-2,6-BP. activates the gluconeogenesis pathway, by allowing inhibition of the reciprocal reaction.

Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.