Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Answer:
Fed state - Insulin; dephosphorylation; increase; glycolysis
Fasting state - Glucagon; phosphorylation; decrease; gluconeogenesis
Explanation:
Fructose-2,6-bisphosphate is an allosteric regulator of the enzymes phosphofructokinase-1 and fructose1,6-bisphosphatase-1 which are involved in glycolysis and gluconeogenesis respectively.
After a meal the body is in a fed state, which stimulates the pancreas to secrete the hormone insulin . The plasma membrane receptor on the liver binds to this hormone and activates a signaling pathway that results in the dephosphorylation of the bifunctional enzyme, phosphofructokinase-2/fructose-2,6-bisphosphatase. This event causes a(n) increase in the concentration level of the fructose-2,6-bisphosphate (F-2,6-BP). This new concentration of F-2,6-BP activates the glycolysis pathway.
In a fasting state, the pancreas secretes the hormone glucagon . The plasma membrane receptor on the liver binds to this hormone and activates a signaling pathway that results in the phosphorylation of the bifunctional enzyme phosphofructokinase-2/fructose-2,6-bisphosphatase. This event causes a(n) decrease in the concentration level of F-2,6-BP. This new concentration level of F-2,6-BP. activates the gluconeogenesis pathway, by allowing inhibition of the reciprocal reaction.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.