Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

Refrigerant 134a enters the evaporator of a refrigeration system operating at steady state at -16oC and a quality of 20% at a velocity of 5 m/s. At the exit, the refrigerant is a saturated vapor at -16oC. The evaporator flow channel has constant diameter of 1.7 cm. Determine the mass flow rate of the refrigerant, in kg/s, and the velocity at the exit, in m/s.

Sagot :

Answer:

mass flow rate = 0.0534 kg/sec

velocity at exit = 29.34 m/sec

Explanation:

From the information given:

Inlet:

Temperature [tex]T_1 = -16^0\ C[/tex]

Quality [tex]x_1 = 0.2[/tex]

Outlet:

Temperature [tex]T_2 = -16^0 C[/tex]

Quality  [tex]x_2 = 1[/tex]

The following data were obtained at saturation properties of R134a at the temperature of -16° C

[tex]v_f= 0.7428 \times 10^{-3} \ m^3/kg \\ \\ v_g = 0.1247 \ m^3 /kg[/tex]

[tex]v_1 = v_f + x_1 ( vg - ( v_f)) \\ \\ v_1 = 0.7428 \times 10^{-3} + 0.2 (0.1247 -(0.7428 \times 10^{-3})) \\ \\ v_1 = 0.0255 \ m^3/kg \\ \\ \\ v_2 = v_g = 0.1247 \ m^3/kg[/tex]

[tex]m = \rho_1A_1v_1 = \rho_2A_2v_2 \\ \\ m = \dfrac{1}{0.0255} \times \dfrac{\pi}{4}\times (1.7 \times 10^{-2})^2\times 6 \\ \\ \mathbf{m = 0.0534 \ kg/sec}[/tex]

[tex]\rho_1A_1v_1 = \rho_2A_2v_2 \\ \\ A_1 =A_2 \\ \\ \rho_1v_1 = \rho_2v_2 \\ \\ \implies \dfrac{1}{0.0255} \times6 = \dfrac{1}{0.1247}\times (v_2)\\ \\ \\\mathbf{\\ v_2 = 29.34 \ m/sec}[/tex]