Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Answer:
0.0793 = 7.93% probability that more than 5% of the guests are pollotarian and therefore she will not have enough pollotarian meals
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
3.5% of the people in the area where a large wedding is to be held are pollotarian.
This means that [tex]p = 0.035[/tex]
300 guests
This means that [tex]n = 300[/tex]
Mean and standard deviation:
[tex]\mu = p = 0.035[/tex]
[tex]s = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.035*0.965}{300}} = 0.0106[/tex]
What is the approximate probability that more than 5% of the guests are pollotarian and therefore she will not have enough pollotarian meals?
This is 1 subtracted by the pvalue of Z when X = 0.05. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.05 - 0.035}{0.0106}[/tex]
[tex]Z = 1.41[/tex]
[tex]Z = 1.41[/tex] has a pvalue of 0.9207
1 - 0.9207 = 0.0793
0.0793 = 7.93% probability that more than 5% of the guests are pollotarian and therefore she will not have enough pollotarian meals
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.