Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

The indices of refraction for her contact lens, cornea, and the fluid behind her cornea are 1.6, 1.4, and 1.3, respectively. Light is incident from air onto her contact lens at an angle of 30 ∘∘ from the normal of the surface. At what angle is the light traveling in the fluid behind her cornea?

Sagot :

Answer:

[tex]23^{\circ}[/tex]

Explanation:

n = Refractive index of air = 1

[tex]n_1[/tex] = Refractive index of contact lens = 1.6

[tex]n_2[/tex] = Refractive index of cornea = 1.4

[tex]n_3[/tex] = Refractive index of fluid = 1.3

From Snell's law

[tex]n\sin30^{\circ}=n_1\sin\theta\\\Rightarrow \theta=\sin^{-1}\dfrac{1\sin30^{\circ}}{1.6}\\\Rightarrow \theta=18.21^{\circ}[/tex]

[tex]n_1\sin\theta=n_2\sin\theta_1\\\Rightarrow \theta_{1}=\sin^{-1}\dfrac{1.6\times \sin18.21^{\circ}}{1.4}\\\Rightarrow \theta_1=20.92^{\circ}[/tex]

[tex]n_2\sin\theta_1=n_3\sin\theta_3\\\Rightarrow \theta_3=\sin^{-1}\dfrac{1.4\sin20.92^{\circ}}{1.3}\\\Rightarrow \theta_3=22.62^{\circ}\approx 23^{\circ}[/tex]

The angle is the light traveling in the fluid behind her cornea is [tex]23^{\circ}[/tex].

The angle is the light traveling in the fluid will be 23⁰. Light is traveling in a particular direction with an angle.

What is snell law?

"The ratio of the sine of the angle of incidence to the sine of the angle of refraction is a constant, for the light of a given color and for a given set of media,

The given data in the problem is;

n is the refractive index of air = 1

n₁ is the refractive index of contact lens = 1.6

n₂ is the refractive index of cornea = 1.4

n is the refractive index of fluid = 1.3

According to Snell's law. The formula for Snell's law is

[tex]\rm n sin30^0 = n_1 sin\theta \\\\ \theta = sin^{- 1}(\frac{1sin30^0}{1.6} )\\\\ \theta = 18.21 ^0[/tex]

For contact lenses;

[tex]\rm n_1sin\theta = n_2 sin\theta_1 \\\\ \theta_1 = sin^{-1}\frac{1.6 \times sin 18.21^0}{1.4} \\\\ \theta_1 =20.92 ^0[/tex]

For fluid;

[tex]n_2 sin\theta_1 = n_2 sin \theta_3\\\\ \theta_3 = sin^{-1}\frac{1.4 sin 20.92^0}{1.3} \\\\ \theta_3 = 22.62 ^ 0 =23^0[/tex]

Hence the angle is the light traveling in the fluid will be 23⁰.

To learn more about snell's law refer to the link;

https://brainly.com/question/10112549