Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Answer:
They should guarantee the lifetime of their batteries for 32 months.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean of 36 months and a standard deviation of 2 months.
This means that [tex]\mu = 36, \sigma = 2[/tex]
If the company wants to replace no more than 2% of all batteries, for how many months should they guarantee the lifetime of their batteries?
The guarantee should be the 2th percentile of lengths, which is X when Z has a pvalue of 0.02. So X when Z = -2.054.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]-2.054 = \frac{X - 36}{2}[/tex]
[tex]X - 36 = -2.054*2[/tex]
[tex]X = 31.89[/tex]
Rounding to the closest month, 32.
They should guarantee the lifetime of their batteries for 32 months.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.