Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Answer:
As the calculated F lies in the acceptance region therefore we conclude that there is not sufficient evidence to support the claim that the variability in concentration may differ for the two companies. Hence Ha is rejected and H0 is accepted.
Step-by-step explanation:
As we suspect the variability of concentration F - test is applied.
n1=10 s1=4.7
n2=16 s2=5.8
And α = 0.05.
The null and alternate hypothesis are
H0: σ₁²=σ₂² Ha: σ₁²≠σ₂²
The null hypothesis is the variability in concentration does not differ for the two companies.
against the claim
the variability in concentration may differ for the two companies
The critical region F∝(υ1,υ2) = F(0.025)9,15= 3.12
and 1/F∝(υ1,υ2) = 1/3.77= 0.26533
where υ1= n1-1= 10-1= 9 and υ2= n2-1= 16-1= 15
Test Statistic
F = s₁²/s₂²
F= 4.7²/5.8²=0.6566
Conclusion :
As the calculated F lies in the acceptance region therefore we conclude that there is not sufficient evidence to support the claim that the variability in concentration may differ for the two companies. Hence Ha is rejected and H0 is accepted.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.