Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Answer:
As the calculated F lies in the acceptance region therefore we conclude that there is not sufficient evidence to support the claim that the variability in concentration may differ for the two companies. Hence Ha is rejected and H0 is accepted.
Step-by-step explanation:
As we suspect the variability of concentration F - test is applied.
n1=10 s1=4.7
n2=16 s2=5.8
And α = 0.05.
The null and alternate hypothesis are
H0: σ₁²=σ₂² Ha: σ₁²≠σ₂²
The null hypothesis is the variability in concentration does not differ for the two companies.
against the claim
the variability in concentration may differ for the two companies
The critical region F∝(υ1,υ2) = F(0.025)9,15= 3.12
and 1/F∝(υ1,υ2) = 1/3.77= 0.26533
where υ1= n1-1= 10-1= 9 and υ2= n2-1= 16-1= 15
Test Statistic
F = s₁²/s₂²
F= 4.7²/5.8²=0.6566
Conclusion :
As the calculated F lies in the acceptance region therefore we conclude that there is not sufficient evidence to support the claim that the variability in concentration may differ for the two companies. Hence Ha is rejected and H0 is accepted.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.