Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Answer:
a) the excitation energy is E₂ λ = 520 nm
the emission energy is E₁, λ= 640 nm
b) #_photons = 2.6 10¹⁸ photons,
c) he excitation wavelength λ = 520 nm is green, therefore the filter is also green
the emission wavelength is lam = 640 nm is orange
Explanation:
a) the energy of a photo is given by the planck relation
E = h f
the speed of light is
c = λ f
f = c /λ
we substitute
E = hc /λ
let's calculate the energy for the two photons
λ = 640 nm = 640 10⁻⁰ m
E₁ = 6.63 10⁻³⁴ 3 10⁸/640 10⁻⁹
E₁ = 3.1 10⁻¹⁹ J
λ = 520 nm = 520 10⁻⁹ m
E₂ = 6.63 10⁻³⁴ 3 10⁸/520 10⁻⁹
E₂ = 3.825 10⁻¹⁹ J
therefore the excitation energy is E₂ λ = 520 nm
the emission energy is E₁, λ= 640 nm
b) For this part let's use a direct proportion rule (rule of three). If a photon (lam = 520 nm) has an energy of 3.825 10⁻¹⁹ J, how many photons have an energy of E = 1 10-3 J. Remember that the power is the energy per unit of time
#_photons = 1 10⁻³ J (1 photon / 3.825 10⁻¹⁹ J)
#_photons = 2.6 10¹⁸ photons
c) the excitation wavelength λ = 520 nm is green, therefore the filter is also green
the emission wavelength is lam = 640 nm is orange
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.